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Abstract

Silicon technology will continue to provide an expo-
nential increase in the availability of raw transis-
tors. Effectively translating this resource into ap-
plication performance, however, is an open chal-
lenge. Ever increasing wire-delay relative to switch-
ing speed and the exponential cost of circuit com-
plexity make simply scaling up existing processor de-
signs futile. In this paper, we present an alternative
to superscalar design, WaveScalar. WaveScalar is a
dataflow instruction set architecture and execution
model designed for scalable, low-complexity/high-
performance processors. WaveScalar is unique
among dataflow architectures in efficiently providing
traditional memory semantics. At last, a dataflow
machine can run “real-world” programs written in
any language.

This paper introduces the WaveScalar instruction
set and an implementation based on current technol-
ogy that is much simpler than current out-of-order
designs. We evaluate our design’s performance po-
tential using the SPEC and mediabench applications.
Our results demonstrate a 30-130% performance im-
provement compared to an aggressively configured
out-of-order superscalar design.

1 Introduction

It is widely accepted that Moore’s Law growth in
available transistors will continue for the foreseeable
future. Recent research [1], however, has demon-
strated that simply scaling up our current architec-
tures will not convert these new transistors into com-
mensurate increases in performance. This gap, be-

tween the performance improvements we need and
those we can achieve by simply constructing larger
versions of existing architectures, will fundamentally
alter processor designs.

Three problems contribute to this gap creating a
processor scaling wall: (1) an ever-increasing dis-
parity between computation and communication per-
formance – fast transistors but slow wires; (2) the in-
creasing cost of circuit complexity, leading to longer
design times, schedule slips, and more processor
bugs; and (3) the decreasing reliability of circuit
technology, caused by shrinking feature sizes and
continued scaling of the underlying material charac-
teristics. Superscalar processor designs, in particular,
will not scale, because they are built atop a vast in-
frastructure of slow broadcast networks, associative
searches, complex control logic, and inherently cen-
tralized structures that must all be designed correctly
for reliable execution.

The complexity of these processors means that
verification is an ever increasing cost in processor
design. To squeeze maximum performance from the
core, more complex algorithms and structures are re-
quired. Each new mechanism, optimization, or pre-
dictor adds additional complexity and increases veri-
fication time. Already, design verification consumes
40% of project resources on complex designs [2] and
verification costs are increasing. The omnipresent re-
quirement that these new circuits operate at very high
frequencies only exacerbates these problems.

Like the memory wall, the processor scaling wall
has motivated a number of research efforts [3, 4,
5, 6]. These efforts all augment the existing von
Neumann model of computation by providing re-
dundant checking mechanisms [3], by exploiting
compiler technology for limited dataflow-like execu-
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tion [4], or by efficiently exploiting coarse-grained
parallelism [6, 5]. In this paper we propose another
approach, WaveScalar, that does not rely upon the
von Neumann model.

At its core, WaveScalar is a dataflow instruction
set and computing model [7]. The dataflow execu-
tion model is fundamentally decentralized, because
each instruction decides when it should fire by ex-
amining its available inputs. As a result, dataflow
execution can utilize a vast amount of parallelism if
it is present in the program. By contrast modern von
Neumann-style processors hide much of the avail-
able parallelism by requiring the program counter to
generate a linear sequence of instructions to feed into
an out-of-order core.

The key difference between WaveScalar and prior
dataflow architectures is that WaveScalar efficiently
supports traditional von Neumann-like memory se-
mantics in a dataflow model. Previously dataflow
machines provided their own style of memory se-
mantics and their own special dataflow languages
that disallowed side effects, mutable data structures,
and many other useful programming constructs [8, 9,
10]. Indeed, a memory ordering scheme that allows
a dataflow machine to efficiently execute code writ-
ten in general purpose, imperative languages (such as
C, C++, or Java), has eluded researchers for several
decades. In Section 2 we present a memory ordering
scheme that efficiently enables true dataflow execu-
tion of programs written in any language.

The new memory ordering scheme removes the
need for instruction fetch, the first of two serializa-
tion points in a superscalar processor. The second
serialization point, the memory interface, is essential
to ensure that memory operations commit (or appear
to commit) in order, but serialized fetch serves lit-
tle purpose aside from generating the order that the
memory system must enforce.

Unfortunately, fetch also defines a total ordering
on all instructions instead of just memory operations
creating a false control dependency between each in-
struction and the next. Superscalar processors use
large and enormously complex hardware structures
to recover just a fraction of the parallelism that fetch
destroys. WaveScalar provides an ordering only on
memory operations, obviating the need for instruc-
tion fetch, unleashing large amounts of parallelism,
and eliminating the need for the costly, centralized

hardware structures that increase design time and
limit clock speeds in out-of-order processors.

Other recent attempts to build scalable proces-
sors such as GPA [4] and Raw [11] have extended
the von Neumann paradigm in novel ways, but they
still rely on two serialization points, unnecessar-
ily limiting the amount of parallelism they can re-
veal. WaveScalar abandons the program counter
completely and provides serialization only where the
program requires it, at memory.

In the next section we describe the WaveScalar in-
struction set and a simple WaveScalar processor de-
sign. Section 3 presents an initial evaluation of our
WaveScalar design, and Section 4 discusses related
work in this area. Finally in Sections 5 and 6, we
discuss future work and conclude.

2 WaveScalar

The original motivation for WaveScalar was to build
a decentralized superscalar processor core, not to
create a dataflow architecture. Our initial approach
was to examine each piece of a superscalar and try
to design a new, decentralized hardware algorithm
for it. Our thesis was that by decentralizing every-
thing, we could design a truly scalable superscalar.
It soon became apparent that instruction fetch is dif-
ficult to decentralize, because, by its very nature,
a single program counter controls it. Our response
was to make the processor fetch in data-driven rather
than program counter-driven order. From there,
our “superscalar” processor quickly became a small
dataflow machine.

Dataflow has a long history. The first designs ap-
peared in the early 70’s [7, 8, 12], and there was a
significant revival in the 80’s and early 90’s [13, 14,
15, 16, 17, 18, 9]. Dataflow machines execute pro-
grams according to the dataflow firing rule, which
stipulates that an instruction may execute at any time,
as long as its operands are available. When dataflow
instructions complete, they trigger the execution of
dependent instructions. Values in a dataflow machine
generally carry a tag to distinguish them from other
dynamic instances of the same variable. Tagged val-
ues usually reside in a specialized memory (the token
store) while waiting for an instruction to consume
them. There are, of course, many variations on this
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basic dataflow idea. We provide references for some
of these in Section 4.

Conceptually a WaveScalar binary is the dataflow
graph of an executable and resides in memory as a
collection of intelligent instruction words. Each in-
struction word is intelligent because it has a dedi-
cated functional unit. Since this is impractical, in-
structions are cached by an intelligent instruction
cache in practice. Instruction communicate with one
another directly by passing messages instead of writ-
ing and reading values from a central register file.

In the next two sections, we describe the
WaveScalar ISA and memory ordering scheme and
a sample processor design that could be built today.

2.1 The WaveScalar ISA

A WaveScalar executable contains an encoding of
the program dataflow graph. In addition to normal
RISC-like instructions, WaveScalar provides special
instructions for managing control flow. In this re-
spect WaveScalar is similar to previous and con-
temporary dataflow assembly languages[12, 8, 19, 9,
20].

WaveScalar is unique, however, because it in-
cludes a mechanism for expressing independence
among memory operations and support for dis-
tributed tag management. Also unlike all previous
dataflow work, WaveScalar targets programs writ-
ten in mainstream imperative languages (such as C),
instead of those written in specialized dataflow lan-
guages [21, 22, 23, 24, 10, 25, 26]. There have been
some prior attempts at this [27, 28], but none ade-
quately addressed the most difficult challenges in-
cluding pointers, aliasing, and mutable data struc-
tures.

Below we describe they key aspects of the
WaveScalar ISA and the its memory ordering
scheme. For a more thorough description of the
WaveScalar ISA and the features it shares with most
dataflow instruction sets see [29].

2.1.1 Control flow

Dataflow instruction sets must make control depen-
dencies explicit because there is no program counter.
WaveScalar accomplishes this using φ and φ−1 in-
structions. Other dataflow ISAs contain essentially

equivalent structures.
φ instructions [30] take two input values and a

boolean selector input and, depending on the selec-
tor, produce one of the inputs on their output. φ
instructions are analogous to conditional moves and
provide a form of predication.

φ−1 instructions [9] do the opposite and take an
input value and a boolean output selector. It directs
the input to one of two possible outputs depending
on the selector value, effectively steering data values
to the instructions that should receive them. They are
required for implementing loops.

These two types of instructions effectively replace
branch instructions and the register file of a super-
scalar with dynamically routed communication net-
works that are under compiler control.

2.1.2 Wave numbers

A significant source of complexity in WaveScalar
is that instructions can operate on several instances
of data simultaneously. For instance, consider a
loop. A traditional out-of-order machine can ex-
ecute multiple iterations simultaneously, because it
creates a copy of each instruction for each iteration.
In WaveScalar, the same processing element handles
the instruction for all iterations. Therefore, some dis-
ambiguation must occur to ensure that the instruction
operates on values from one iteration at a time.

A traditional dataflow machine uses tags to iden-
tify different dynamic instances. In WaveScalar, we
aggregate tag management across a directed acyclic
graph of basic blocks called a wave. Wave numbers
differentiate between dynamic waves. Two special
types of instructions manage wave numbers:

• WAVE-COORDINATE: The WAVE-
COORDINATE instruction takes as input an
existing wave number, increments it (modulo
a maximum), and sends the new value to the
associated WAVE-RENAME instruction(s) and
the following WAVE-COORDINATE instruction.

• WAVE-RENAME: The WAVE-RENAME instruc-
tion takes as input a data value and a wave num-
ber. It replaces the wave number of the data
value with the new wave number it receives
from the WAVE-COORDINATE instruction.
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To use these instructions, the compiler begins by
partitioning an application’s control flow graph into
waves. Each wave is a connected, directed acyclic
graph with a single entrance and the additional con-
straint that, for every node, either all or none of its
predecessors may be in the same wave. We partition
an application into maximal waves and add a single
WAVE-COORDINATE node and one WAVE-RENAME

node for each of the wave’s live input values. These
nodes reside at the entrance of the wave and ensure
that all data values entering the wave have the same
wave number.

The effect of these instructions is similar to regis-
ter renaming in a superscalar core. They both allow
many instances of the same instruction to execute si-
multaneously, revealing more parallelism.

2.1.3 Memory ordering

Traditional imperative languages provide the pro-
grammer with a model of memory known as “total
load-store ordering.” Coupled with indirect address-
ing and memory aliasing, they leave the hardware lit-
tle room to maneuver when it comes to extracting
parallelism from memory accesses.

WaveScalar brings load-store ordering to dataflow
computing using wave-ordered memory. The
WaveScalar compiler statically assigns a unique
(within a wave) sequence number to each memory
operation in breadth first fashion, ensuring that se-
quence numbers increase along any path through the
wave. Next, it labels each memory operation with
the sequence numbers of the predecessor and succes-
sor memory operations, if they can be uniquely de-
termined. Because of branches and joins, there can
be multiple predecessor or successor memory oper-
ations. In these cases, the compiler uses a special
wild-card value, ‘?’, instead. The combination of an
instruction’s sequence number and the predecessor
and successor sequence numbers form a link, which
we denote < pred, this, succ >.

When a load or store instruction executes, it sends
its link, its wave number (taken from an input value),
an address, and data (for a store) to the memory. The
memory system uses this information to assemble
the correct sequence of loads and stores. This is pos-
sible because a memory instruction’s link and wave
number provide a total ordering on memory opera-

tions through any traversal of a wave, and, by ex-
tension, an application. To guarantee a total order-
ing, no path through the program may contain a pair
of memory operations in which the first operation’s
succ value and the second operation’s pred value are
both ‘?’. If such a situation occurs, the compiler adds
a special MEMORY-NOP instructions to remove the
ambiguity. These instructions participate in memory
ordering but have no effect. In practice, MEMORY-
NOP’s are rare (less than 3% of instructions).

Figure 1 provides an example of wave-ordered
memory in action. For any two consecutive mem-
ory accesses, A and B, either the A’s ‘succ’ value
matches B’s sequence number or B’s ‘pred’ value
matches A’s sequence number. In a WaveScalar
binary, this property holds on all possible paths
through a wave. Furthermore, the store buffer de-
tects gaps in the sequence of operations and can wait
for the necessary operation to arrive.

Wave-ordered memory is the key to efficiently ex-
ecuting programs written in conventional languages.
It allows WaveScalar to separate memory ordering
from control flow. The processing elements are freed
from worrying about implicit dependencies through
memory and can treat memory operations just like
other instructions. The sequencing information in-
cluded with memory requests provides a concise
summary of the path taken through the program. The
memory systems can use this summary in a vari-
ety of ways. Figure 1 depicts the operation of a
wave-ordered store buffer. Alternatively, a specula-
tive memory system [31, 32, 33] could use the order-
ing to detect misspeculations.

2.2 A practical implementation for today

In this section, we outline the design of a small
WaveScalar processor that can be built with cur-
rent technology and execute WaveScalar binaries.
We point out four problems, queue overflow, find-
ing instructions in the processor, instruction replace-
ment, and the design of the on-chip network, that
arise in implementing WaveScalar CPUs and de-
scribe “proof-of-concept” solutions.
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Figure 1: Wave-ordered Memory: Memory op-
erations are ordered through a combination of
static sequence numbers and dynamic wave num-
bers. The key is that on any path taken through
a wave, complete knowledge about the load store
order is available.
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Figure 2: A Simple WaveScalar Processor: A
simple architecture to execute the WaveScalar
ISA. The processor combines clusters of pro-
cessing elements (left) with small data caches
and store buffers to form a computing substrate
(right).

2.2.1 The basic design

Figure 2 is a block diagram of a WaveScalar core.
It is a grid of approximately 2K processing tiles ar-
ranged into clusters of 16 tiles each. Each tile con-
tains dynamic configuration logic to control instruc-
tion placement, input and output queues for instruc-
tion operands, communication logic, and a func-
tional unit.

Each tile also contains buffering and storage for 8
different instructions, bringing the total capacity to
16 thousand instructions – equivalent to a 64Kbyte
instruction cache in a modern RISC machine. Total
storage, however, is close to four megabytes when
the input and output operand queues for each instruc-
tion are accounted for.

In addition to the instruction operand queues, the
processor contains several store buffers and tradi-
tional level 1 data caches. Each dynamic wave is
bound to a nearby store buffer that processes its
memory requests, and as waves complete the store
buffer of the next wave is triggered to proceed. The
caches access DRAM through a conventional uni-
fied, non-intelligent L2 cache.

Within a cluster, the 16 tiles communicate via a

set of shared buses. For communication between
clusters, WaveScalar uses a dynamically routed grid-
based network. Tiles within the same cluster receive
results at the end of the clock cycle during which they
were computed. Data that must cross clusters incur a
one-cycle penalty per cluster crossed.

To execute, each instruction is bound to one of the
processing elements, where it remains for possibly
millions of executions. Good instruction placement
is paramount for optimal performance, because com-
munication latency depends on instruction place-
ment.

2.2.2 Queue overflow

The WaveScalar model assumes that each instruction
can buffer an unlimited number of input values and
perform wave number matching among them. In re-
ality, there is limited storage available at each pro-
cessing element. Our initial solution to this problem
is to store overflow values in main memory. Each
input queue stores its overflow values in a portion
of the virtual address space dedicated to it. The
address of an overflow value is the instruction ad-
dress, queue number, and wave number concatenated

5



together. When a new overflow value is stored to
memory, the processing element checks for the cor-
responding inputs in the other input queues (also pos-
sibly stored in main memory). If a match is found the
instruction can fire. We expect in-memory matching
to be rare. The precise details of overflow manage-
ment are a subject of future work.

2.2.3 Finding instructions

Once an instruction is in the grid it must determine
the physical location of its dependent so it can send
values to them. To solve this problem the processor
maintains a table in memory that maps each instruc-
tion’s address in memory to a location in the grid.
When an instruction arrives in the grid, it looks up
the location of each of its dependents and sends the
values it produces to those locations. The key is that
it is acceptable for this translation process to be rel-
atively slow, because it only needs to occur when
the instruction arrives in the cache. The cost can be
amortized over many executions.

2.2.4 Cache replacement

Inevitably, not all the instructions in a program will
fit into the processors. We detect cache misses by
defining a special “not present” location. In the loca-
tion table described above, any instructions not cur-
rently in the processor has this location. When a
message arrives at this special location, the destina-
tion instruction will be assigned to a processing ele-
ment to receive it, and the sender will receive a mes-
sage informing it that the destination’s location has
changed.

If there is no room for the new instruction, an in-
struction must be removed. Removing an instruction
involves swapping out all of its state and notifying
the instructions that send it values that it has left the
grid. To reduce the cost of removal, instructions can
volunteer to leave when their queues are empty and
they have not been executed for some time. Proac-
tively removing instructions from the grid means
there will almost always be an open space in the grid
for an incoming instruction.

2.2.5 On-chip communication

The on-chip network connecting the processing ele-
ment clusters is an important aspect of a WaveScalar
processor. We propose a simple semi-random dy-
namic routing scheme that attempts to route mes-
sages along the shortest possible path but occasion-
ally perturbs messages’ paths to avoid contention. In
addition, the network provides an ack-based back-
pressure mechanism that allows instructions to keep
its input queues short and avoid the “parallelism
explosion” problem that can cause problems with
dataflow machines [34]. Our preliminary results
show that surprisingly few messages travel across the
network because fewer than 11% of messages leave
their cluster of origin. On average, our data suggest
that fewer than 10-20 messages per thread would be
in-flight on the inter-cluster network each cycle. As
a result, we expect contention on the network to be
minimal.

3 Results

In this section, we compare our WaveScalar proces-
sor to an aggresive superscalar design.

For our WaveScalar configuration, we use the sys-
tem described in Section 2.2, except we do not model
contention in the network or bound the size of the in-
struction input queues. It has 16 processing element
per cluster, and we place instructions statically into
clusters using a simple greedy strategy that attempts
to place dependent instructions in the same cluster.

Our superscalar machine uses a 15 pipeline stage,
16-wide out-of-order processing core, with 1024
physical registers and a 1024 entry issue window
with oldest-instruction-first scheduling. Its core uses
an aggressively pipelined issue window and register
file similar to what is described in [35], to reduce crit-
ical scheduling/wake-up loop delays. The core also
includes a gshare branch predictor [36], store buffer,
and 16 ported memory system. Since the pipeline
is not partitioned, 15 cycles is aggressive given the
size of the register file and issue window and width
of the machine. Both machines have perfect memory
systems.

We compile our benchmarks using the Compaq
cc (v5.9) compiler on Tru64 Unix, using the -O4
-unroll 16 flags. The benchmarks are vpr,
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Figure 3: Superscalar vs. WaveScalar: Each appli-
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the WaveScalar processor (right bar). The vertical
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twolf, and mcf from SPECint2000 [37], equake from
SPECfp2000, adpcm, and mpeg2encode from media-
bench [38], and fft, a kernel from Numerical Recipes
in C [39]. We use a custom binary rewriting tool to
translate Alpha binaries into WaveScalar binaries.

We report the results in terms of Alpha-equivalent
instructions per cycle (AIPC). For the WaveScalar
measurements we carefully track which WaveScalar
instructions correspond to particular instructions in
the alpha executable and which are added by the bi-
nary translation process. This allows us to measure
the amount of work in terms of alpha instructions per
cycle, a metric that fairly compares the amount of
application-level work each processor performs.

Figure 3 compares the WaveScalar processor to
the superscalar. The WaveScalar processor outper-
forms the superscalar by a factor of 1.8, on aver-
age. For highly loop parallel applications, such as
mpeg, the WaveScalar processor is over 2.3 times
faster than the comparable superscalar. In addition,
we expect the WaveScalar processor to have faster
cycle time, improving its performance further.

4 Related work

WaveScalar builds upon several ground-breaking
studies in both dataflow and von Neumann process-
ing. In this section we place WaveScalar in the con-
text of previous work and describe where it extends
prior projects and stands in contrast to them.

4.1 Dataflow

Dataflow computing is perhaps the best studied al-
ternative to the von Neumann model of computation.
The first dataflow architectures [7, 12] appeared in
the mid to late 70’s, and in the late 80’s and early 90’s
there was a notable revival [13, 14, 15, 16, 17, 18].
The dataflow work of the late 80’s and early 90’s
made it clear that high performance dataflow ma-
chines were difficult to build. Culler et. al. [40] ar-
ticulated this difficulty as a cost/benefit problem and
argued that dataflow suffers from two fundamental
problems, both of which have to with the top of the
memory hierarchy.

First, the memory hierarchy limits the amount of
latency a dataflow machine can hide. A processor
can only hide latency (and keep busy) by executing
instructions whose inputs are at the top level of the
memory hierarchy. If the top of the memory hierar-
chy is too small, the processor will sit idle, waiting
for the inputs to arrive.

Second, the data flow firing rule is naive, since it
ignores locality in execution. Ideally, a dataflow ma-
chine would execute program fragments that are re-
lated to one another to exploit locality and prevent
“thrashing” at the top of the memory hierarchy.

Culler’s arguments were sound at the time, but
they are bound to the assumption that execution re-
sources are expensive and that hiding latency and
keeping the processors busy are the keys to perfor-
mance. Given that commercial microprocessors ship
with less than 10% of the die area devoted to execu-
tion, this perspective is no longer up to date. The key
measure of efficiency is total performance per chip,
independent whether this performance is achieved
through hundreds of execution cores (WaveScalar),
or massive communication networks (superscalars).
We have demonstrated that a WaveScalar proces-
sor can effectively exploit locality in communication
patterns to increase performance for a given die area.
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This does not mean, however, that the memory hi-
erarchy is unimportant, but in recent years the size of
on-chip memories has soared. The PA-RISC 8700
has 2.25MB of L1 caches [41] and the forthcom-
ing Madison chip from Intel will include a 6MB L2
cache [42]. Since each WaveScalar processing ele-
ment contains a small memory, the processor can si-
multaneously utilize an enormous amount of on-chip
storage with very short access times.

The WaveScalar ISA builds upon some of the orig-
inal program representations used in [8, 9], which
was derived from earlier compiler and theory work
[10]. The intermediate compiler language, Pega-
sus [43], for NanoFabrics [20] adapts these ideas as
well. The Pegasus researchers transform an entire
application into a static dataflow graph and map it
onto a large spatial fabric of molecular electronics
that can operate like an FPGA. To date, the system is
limited to a static dataflow model, although the early
discussions of moving to a partially dynamic system
are in [43].

4.2 TRIPS

The TRIPS / GPA [4] processor and WaveScalar are
attacking the same technology challenges, and tend
to use the same terminology to describe aspects of
their designs. However, the only architectural fea-
ture TRIPS and WaveScalar share is the use of direct
links between instructions of the same hyper-block
(in TRIPS) directed acyclic graph (in WaveScalar).
TRIPS is an innovative way to build a Very Long In-
struction Word (VLIW) processor from next gener-
ation silicon technology. A VLIW bundles instruc-
tions horizontally to be executed in parallel. The
TRIPS processor makes the keen insight that be-
tween subsequent VLIW instructions is a significant
amount of dependence. Hence, it bundles groups of
VLIW instructions together vertically and describes
their dependencies explicitly instead of implicitly
through registers. Next it statically schedules them
onto a physically horizontal and vertical VLIW-like
set of functional units. For the most part, a traditional
centralized register file is used to pass data items be-
tween hyperblocks; however, work is ongoing within
the TRIPS project to develop methods to stitch data
dependences dynamically between adjacent hyper-
blocks [44]. It will be interesting to see how far this

notion can be pushed by the TRIPS project without
transforming all the way to a dataflow model of com-
putation like WaveScalar.

WaveScalar offers three key advantages over the
existing TRIPS architecture. First, it makes a clean
break away from a single program counter. This ex-
poses more parallelism through the execution model,
without relying upon trace scheduling compilers.
Lam et al [45] illustrate that being forced to pro-
cess control dependencies in program order severally
constrains ILP. Unlike TRIPS, WaveScalar, breaks
away from this constraint, taking a step towards what
Lam terms the “CD-MF” (control dependence with
multiple flows) model of computation. Yet it does
this without speculation. It achieves it by virtue
of being based on a dataflow model of computa-
tion and wave-memory ordering. The second advan-
tage WaveScalar offers over TRIPS is that instruc-
tions are designed to execute in-place in an intelli-
gent memory system. This allows for the construc-
tion of a cache to exploit dataflow locality across far-
flung sections of an application, not just locally ad-
jacent hyperblocks. Furthermore the dynamic nature
of WaveScalar allows it to optimize these instruction
placements locally with runtime information. TRIPS
relies upon static placment of dependent instructions
within a single hyperblock. Finally, the WaveScalar
memory model exposes memory parallelism across
hyperblocks (i.e. within wave). Like all von Neu-
mann machines, memory ordering occurs through
a program counter with TRIPS, relying upon good
control prediction for performance.

4.3 RAW and SmartMemories

The idea of computing with ten’s to hundred’s of
nodes on a chip is not new. The RAW [5] and
SmartMemories [6] project use a tiled node archi-
tecture. While pictorially WaveScalar systems might
appear like yet another tiled architecture, there are
several key differences. On some level, both RAW
and SmartMemories are really chip-multiprocessors,
except that they have sophisticated and novel com-
munication facilities tied into their processing cores
and memory systems. Both architectures use a pro-
cessor connected to a memory for each node.

The RAW project puts forth two programming
models. The first, similar to SmartMemories, is that
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of an advanced chip multiprocessor; the second is
that of a speculative threaded machine [46]. Unfor-
tunately, the inter-node communication latency be-
tween tiles in RAW is extremely high, compared to
classic inter-functional unit latencies in superscalars
(but compared to a conventional DSM it is quite
low).

5 Future work

In this paper we presented early results of our initial
investigation. Our research of WaveScalar is just be-
ginning, however, so at this point there are far more
questions than answers. There are many avenues
of future WaveScalar research open to investigation.
We outline a broad research agenda below.

5.1 Microarchitecture and hardware

Detailed Evaluation: Our first priority is to perform
a more thorough evaluation of WaveScalar processor
performance both relative to superscalar designs and
with respect to the key architectural parameters (e.g.
cluster size, number of clusters, etc.).

After that, the most pressing unexplored microar-
chitectural issues are data caching and communi-
cation infrastructure. Our current architecture dis-
tributes the datacache into several small caches
throughout the architecture. Our plan is to apply
an existing directory-based cache coherence proto-
col [47, 48] to these on-chip caches. We are building
a model of this protocol and cache hierarchy into our
simulation framework, to explore its effect on perfor-
mance.

The current WaveScalar architecture uses a dy-
namically routed switched network, similar to [6].
Without the ability to drop packets within the net-
work, these networks can deadlock. Initially, we
will use use a reliable acknowledge/resend mecha-
nism between nodes, but in the future we will inves-
tigate integrated checkpointing mechanisms. Check-
pointing may have additional uses besides deadlock
avoidance in the area of coarse grained speculation.

Hardware implementation: We plan to im-
plement a WaveScalar processor using the Bathy-
sphere [49] emulation system. A working prototype
will both demonstrate the simplicity of WaveScalar

implementations and allow us to explore operating
system issues, long-term performance, and fault tol-
erance on a real, running system.

Speculation: Preliminary results suggest that
WaveScalar can see significant benefit from several
kinds of speculation. WaveScalar systems can specu-
late by initiating speculative execution at a node with
one message and completing (or squashing) it with
a second message once the correct path or value is
available. We are currently exploring several existing
techniques for control and fine and coarse grained
memory speculation [50, 31, 51] and determining
whether and how to integrate them into our design.

WaveScalar cache hierarchies: WaveScalar pro-
cessors cache instructions for execution and, there-
fore, techniques that improve traditional cache per-
formance should also improve WaveScalar perfor-
mance. For example, a Level-2 WaveScalar cache
might contain a vast number of instructions but
matching might be relatively slow. By extension, we
could construct a multi-level WaveScalar cache hier-
archy. Victim buffers and instruction prefetching are
also intriguing optimizations.

Online optimization: We have observed that
allowing the location of instructions in the grid to
evolve with program behavior can significantly im-
prove performance. In [52] we described a approach
to real-time adaptation based on simulated annealing
that improves performance by between 30 and 50%,
but this is only one of many possible approaches.

5.2 Instruction set and software support

Compiler: A top priority is to replace the Alpha
ISA to WaveScalar ISA binary rewriter with a back-
end for an existing C/C++ compiler. Using a native
compiler will generate more efficient code and allow
us to explore opportunities and problems unique to
WaveScalar, such as compiler-directed wave number
management and direct execution of single static as-
signment [30] code using φ instructions.

Once the basic infrastructure is in place we will
be able to explore many interesting aspects of the
WaveScalar model. The WaveScalar ISA makes ex-
plicit many aspects of execution that are implicit
in the von Neumann model. Memory order, con-
trol flow, instruction-to-instruction communication,
and synchronization (in the form of wave number
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matching) are all first class entities in the WaveScalar
ISA. Programmers and compilers can use the prim-
itives to implement a huge variety of control- and
data-parallel programing paradigms (vector, stream-
based, micro-threads, etc.). Eventually, we hope to
tune and extend WaveScalar to be “complete,” that
is, capable expressing any form of parallelism in a
single instruction set.

Program-defined hardware interfaces: Because
WaveScalar processors are naturally multithreaded,
For instance, a purpose-built memory thread could
could “wrap” the normal memory interface hardware
and handle memory requests in application-specific
ways. Applications include scatter/gather, stream-
ing, and encrypted memory interfaces. For applica-
tions that require the normal interface, processing el-
ements that implement these threads can be available
for normal instructions.

Program-defined hardware interfaces:
WaveScalar processors are naturally multithreaded.
By simply adding a THREAD-ID to each wave
number, and modifying the memory interface
accordingly, a vast array of multithreading strategies
become possible. For instance, it is possible for
the programmer or the compiler to design custom
threads to handle or augment tasks traditionally
implemented in hardware. Applications include
scatter/gather, streaming, and encrypted memory
interfaces. For applications that require the normal
interface, processing elements that implement these
threads can be available for normal instructions.

5.3 System abstractions and parallelism

For WaveScalar CMP vs. SMT is moot: The
WaveScalar instruction set and WaveScalar archi-
tecture are ideal tools for building threaded ma-
chines, because dataflow models are naturally multi-
threaded. Currently, there are two classes of threaded
processors, simultaneous multithreading machines
and chip multiprocessors. The fundamental differ-
ence between the two is whether resources are par-
titioned statically between the threads or shared dy-
namically. In WaveScalar processors this is simply a
parameter to the instruction replacement policy: for
the SMT [53] model, all the threads compete for the
available processing elements; in the chip multipro-
cessor [54] model WaveScalar confines each thread

to a portion of the grid.

Defect tolerance: Large WaveScalar systems
will suffer from defective nodes, clusters, and com-
munication networks. The fact that our architec-
ture is uniform and decentralized means that it map
around such defective nodes with little performance
loss. Exploring the effects of defective nodes and dy-
namic faults will be a long-term focus of WaveScalar
research.

Computer systems as substrate: Once we
adopt a uniform substrate for computation, the dis-
tinction between the processors and the rest of
the computer system’s components begins to blur.
For instance, it is easy to imagine building ever-
larger WaveScalar processors by assembling multi-
ple WaveScalar chips, much as we increase mem-
ory capacity by inserting more DRAM chips. Pro-
grams could spread across multiple chips, even mul-
tiple systems, and different chips could provide dif-
ferent functions. A WaveScalar graphics proces-
sor would have support for 3D rendering as would
a WaveScalar I/O controller. To the program, all
these computational resources would appear simply
as different types of functional units embedded in the
computational substrate. Taken to the extreme, this
model of system construction unifies the namespace
of what is inside the processor (execution resources),
what is on the system board and beyond.

6 Conclusion

In this paper we have presented WaveScalar, a new
dataflow execution instruction set with several at-
tractive properties. In contrast to prior dataflow
work, WaveScalar provides a novel memory order-
ing model that efficiently supports mainstream pro-
gramming languages on a true dataflow computing
platform without sacrificing parallelism.

WaveScalar’s ability to exploit parallelism usually
hidden by the von Neumann model, leads to a fac-
tor of 2 performance increase on the SPEC and me-
diabench applications when compared to an aggres-
sively configured superscalar processor. It does this
in a communication-scalable architecture that pro-
vides many opportunities for further study and re-
finement.
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